88国产精品视频一区二区三区,久久精品AⅤ无码中文字字幕重口,久久偷看各类WC女厕嘘嘘,好男人资源在线看免费的

北京鴻鷗成運儀器設備有限公司
中級會員 | 第15年

15601379746

工業物聯網監控系統
蓄熱型(EHT)地源熱泵系統 智能交通系統方案 智能燃料測溫系統 料場溫度監測系統 機器聲紋在機械設備健康狀態監測中的應用 物聯網智慧養牛系統 地熱井高精度傳感器分層測溫方案 深井連續測溫測深測壓系統 地溫監測系統 供暖換熱站在線遠程監控系統方案 地熱資源監測系統/地熱管理系統 高精度18B20數字溫度傳感器 在線多參數水質監測 NB-GPS型微功耗自動采集系統 深井救援裝備 罐區線光纖光柵感溫火災探測系統 糧庫溫度監控系統 地源熱泵溫度監控系統 地熱井分布式光纖測溫監測系統 0-3000米深井測溫儀/深水測溫儀 礦井通風阻力測定系統 智慧糧庫系統 土壤墑情監測系統 基于物聯網水利信息化方案 基于物聯網地質環境監測預警方案 油罐溫度液位在線監控系統 基于物聯網文物監測預警解決方案 水位遠程監測系統方案 地熱井遠程監控系統 煤堆溫度遠程監控系統 機房大棚養殖溫濕度監控系統 藥品冰箱溫濕度智能化監控系統方案 超市及營業性場所環境監測系統 溫濕度記錄儀 工業物聯網自動化系統 防災減災預警信息展播系統 建筑混凝土煤堆瀝青測溫系統 地源熱泵溫度場監控系統 水情自動化測報系統 物聯網水產養殖監控系統 智能溫室大棚監管系統 糧倉糧情測控系統
混凝土耐久性測試儀器
公路道路橋梁樁基儀器設備
進口類系列產品
工程地質隧道壩體勘測儀器
建筑工程質量無損檢測儀器
鋼結構檢測試驗儀器設備
建筑節能測試儀器設備
交通工程檢測儀器設備
室內環境,氣體環保測試儀器
紡織類測試儀器
測量測繪檢測儀器
工業無損檢測儀器
農藥試驗設備及分析儀器
FLUKE系列產品
工業自動化控制系統
裝配式高效機房

路面無損檢測技術新發展

時間:2014/7/11閱讀:3088
分享:

路面無損檢測新技術及發展方向

[摘要] 綜合介紹了國內外在路面使用性能無損檢測上的新技術及相關的研究領域。在此基礎上,分析了我國在新型檢測設備的應用和相關研究方面的現狀與不足,探討了未來的發展趨勢。

關鍵詞  路面無損檢測,路面彎沉,抗滑能力,平整度,車轍,表面破損

1 概述 路面是公路的重要組成部分,其使用性能直接關系到道路為用戶提供的舒適性、安全性、快捷性等服務的水平,關系到道路本身的使用壽命。因此,必須加強對路面的養護管理,確保提供可接受的服務水平。自20世紀60、70年代以來,許多國家都陸續建立了較為完善的道路養護管理系統,這些系統的建立有效地保證了養護的科學性,但普遍面臨數據采集手段相對落后的問題:大量的設備在使用時費時、費力、對交通影響大,有些還要破壞路面結構的完整性,而且數據的精度也難以得到保證。為此,各國針對道路檢測技術開展了深入研究,并且隨著計算機技術、自動化控制技術、高精度測微技術的進步,在近的20年里有突破的進展。我國從20世紀80年代后期開始,通過設備與技術引進和自主開發,在路面檢測方面也有了巨大的發展。本文在國內外考察與研究的基礎上,總結了路面主要無損檢測技術和相關研究的新進展,分析了在我國的應用與研究情況及發展趨勢。

2 檢測技術與相關研究2.1 彎沉測試 落錘式彎沉儀(fwd)是目前應用較為廣泛的彎沉檢測設備,代表了彎沉檢測的發展方向。它的基本原理是通過液壓系統提升和釋放荷載塊對路面施加沖擊荷載,荷載大小由落錘質量和起落高度控制,荷載時程和動態彎沉盆均由相應的傳感器測定。20世紀60年代,法國首先提出沖擊式動力彎沉儀的初步設想,70年代后期丹麥和瑞典首先研制成fwd。80年代以后,美國、英國和日本等相繼引進和仿制了這種彎沉儀。研究表明,fwd的沖擊荷載與時速60~80公里的車輛對路面的荷載相似,可以較好地模擬行車荷載作用,并且測速快,精度高,因此自20世紀80年代初以來,fwd在上得到日益廣泛的應用,至今已有50多個國家和地區引進了fwd。美國聯邦公路局經過對比分析,確認fwd是較理想的路面承載能力評定設備,并選為實施shrp計劃中路面承載能力評定部分的重要設備;殼牌石油公司也已正式將fwd的應用納入殼牌路面設計手冊[1]。美國早在1994年就有80%的州擁有至少一臺fwd,我國到2001年底有約40臺fwd在各地使用,并且用戶數還在不斷地增加。 繼fwd之后,新一代彎沉儀rwd(rolling wheel deflectometer 滾輪式彎沉儀)正處于研究階段。它是采用高頻激光掃描,連續地記錄行駛中的測試車在路表產生的彎沉,測試速度約55英里/小時。目前主要有dynatest(丹麥)與quest integrated(美國)合作、美國密西西比州的ara (applied research associates)公司和瑞典的rdt等機構從事rwd的研制工作,*代產品已經問世,精度適合于路網普查。rwd的大優點是:所記錄的是真實受力狀態、而不是模擬荷載狀態下的彎沉,并且測速遠大于fwd,因此對交通的影響較小,是較為理想的彎沉檢測設備,因此是此類設備的重要發展方向。 得克薩斯大學開發的rdd(rolling dynamic wheel deflectometer 滾動動力彎沉儀)的加載原理與rwd相似,但彎沉的測量采用的是滾動式彎沉傳感器。它的測試速度約2.5km/h,可以同時提供路表破損攝像。rdd的主要優點是連續測量,信息量大,但由于測試速度慢等原因,用戶很少。 在美國,擁有fwd的用戶絕大部分都配套使用分析軟件,常用的為darwin、aashto、modulus、evercalc、illiback、everpave等,主要分析功能是性能評價和罩面設計。這與我國的情況有較大區別,據了解,我國絕大部分fwd用戶單位沒有配套的分析軟件,fwd也僅作為一種高精度的彎沉測量儀器在使用,僅有少數研究性單位在進行深入探討。 國內外圍繞著fwd所開展的研究主要包括: 更可靠的模量反演技術。通過對fwd所測彎沉盆數據的分析,反演路面結構層的彈性模量。目前的重點和需要解決的問題包括路面結構力學特性的模擬、反分析的適定性(存在性、*性、穩定性)、反演結果的驗證與應用等。 與加速路面試驗(apt)相結合的試驗研究。在試驗路上進行加速破壞試驗,路面結構內設置各種傳感器,測試應力、應變、溫度、含水量等信息。在試驗過程中,采用fwd進行彎沉檢測、模量反演、性能評價及剩余壽命預測等試驗和分析,并與荷載重復作用次數、應力、應變、表面破損等信息建立,從而修正fwd的性能評價和剩余壽命預測方法。

2.2 斷面測試(平整度與車轍)路面斷面測試主要用于計算兩個指標,平整度(縱斷面)和車轍(橫斷面)。其中平整度是評定路面質量的重要指標,是道路使用者判斷道路好壞的直接依據。在20世紀70、80年代,平整度測量設備主要是水平儀、三米直尺等,測試精度低、速度慢,一般只能抽樣調查;到90年代初,檢測手段有一定的提高,如連續式平整度儀,但仍存在可重復性差、測試速度慢的缺點。而車轍的產生將對行車安全帶來重大影響,尤其是在雨后的高速公路上,常用的檢測設備是路面橫斷面儀和橫斷面尺。90年代中、后期,連續式激光斷面儀在我國逐漸得到應用,是目前先進的平整度和車轍檢測設備,正常測試速度為80km/h,并且同時還可以測量橫坡、縱坡、轉彎曲率等指標[2],目前在國內約有近20臺。 激光斷面儀的基本原理是:通過橫向分布的若干個(國內通常為5~9個)激光傳感器測試距離路面的高度,得到一個橫斷面,從而可以計算車轍;通過對應于輪跡位置的激光傳感器測得距離路面的高度,隨著車輛的行駛可以得到路面縱向斷面,即可計算縱向平整度,其中車輛振動帶來的影響通過加速度傳感器(對應左右輪跡各一個)記錄數據的兩次積分來扣除;慣性運動傳感器(1個)可以反映水平縱向、水平橫向和豎向的角度。 圍繞激光斷面儀所展開的研究主要是: 

平整度測試的可重復性、可再現性研究。對同一個測試路段,采用同一個設備進行多次測量,各次數據間的吻合性稱為可重復性;對同一個測試路段,采用原理相同或類似的不同設備進行測量,數據間的吻合性稱為可再現性。歐洲和美國均進行過較大規模的可重復性和可再現性研究,在其所使用的主流設備類型和品牌之間建立了相關關系。目前在我國使用的激光斷面儀有多種品牌,有的一種品牌還有*代產品和第二代產品,這些設備已經開始大量使用,但由于尚沒有進行系統的可再現性研究,不同設備之間數據的可比性就不得而知。 
激光傳感器個數和車轍測試精度的關系。由于激光斷面儀是一種離散的車轍檢測設備,通常用若干個點的連線來代表橫斷面,同時,其測試寬度小于一個車道的寬度。因此,它所反映的道路橫斷面是近似的,由此所計算的車轍也必然是近似的。美國的ltpp項目認為沿橫向分布3個傳感器的斷面儀不能用于車轍測量,配置5個傳感器后測試結果仍與橫向連續測試的結果有較大差異,但相關性較好,相關系數為80%,建議在修正后用于路網普查;美國得州運輸部的研究表明,5個傳感器的測試結果約為連續測量結果的80%,并推薦橫向每100mm配置一個傳感器,這樣精度可以達到95%[3]。 由于激光傳感器價格昂貴,橫向每100mm配置一個是不經濟的。目前在加拿大出現了兩種不同的車轍檢測設備,可以較好地解決這個問題:一種是在輪跡處仍采用激光傳感器測試平整度,而其它位置采用密布超聲波傳感器代替激光傳感器,由于超聲波傳感器的價格只有激光傳感器的幾十分之一,雖然單個傳感器的測試精度有所降低,但用于繪制橫斷面和計算車轍是足夠和經濟的;另一種是用兩個激光束接發器發射激光束,橫向連續覆蓋整個車道,因此精度是相當高的。兩種設備在配置完整的情況下均可以同時高速采集平整度數據。 2.3 抗滑能力測試目前車載或車牽引的高速自動化路面抗滑能力測試設備主要有三種:橫向力系數測試儀、剎車式摩擦系數測試儀、不*剎車式摩擦系數測試儀。橫向力系數測試儀是在我國應用為廣泛的自動摩擦系數儀,20世紀90年代中期實現了國產化[4]。該設備的基本原理是設定試驗輪與行車方向成一定角度,以便產生一個同試驗輪平面垂直的橫向力,該橫向力與試驗輪對路面荷載的比值即為橫向力系數,橫向力系數反映的是車輛在路面上側滑的危險性,正常測試速度約50km/h;剎車式摩擦系數測試儀是在行駛的過程中,每間隔的距離自動對測試輪剎車,剎車期間測試輪在路面上滑動,根據傳感器所記錄的力,即可計算制動力系數。該設備在美國是抗滑能力測試標準設備之一,測試速度高可以達到110km/h;不*剎車式摩擦系數測試儀的測試輪和行駛輪之間用不等直徑的同軸齒輪和鏈條連接,使得測試輪的滾動線速度小于行駛輪的滾動線速度,在正常測試時呈現連滾帶滑的運動狀態,根據力傳感器記錄的數據即可計算路面摩擦系數。該設備在路面上的測試速度為50km/h左右,在歐洲應用較多,尤其在機場道面的抗滑能力測試方面。 我國目前在路面抗滑能力測試方面仍主要采用擺式摩擦系數儀,進口的和國產的都有;橫向力系數儀已逐漸擁有了相當多的用戶;剎車式和不*剎車式摩擦系數測試儀目前僅有極少數用戶。很明顯地,擺式摩擦系數儀已經越來越不適應我國高速公路建設的需要,一方面該測試方法對交通的影響較大,存在不安全因素,另一方面它不能較好地反映路面的宏觀紋理構造對摩擦系數的影響,而宏觀紋理構造是高速公路路面抗滑能力的決定因素。因此,應當大力推廣自動化的抗滑能力測試儀在中國的應用。

2.4 路表破損采集路面表面破損率是路面養護決策的重要指標,也是群眾評價公路管理部門工作效率的直觀依據。我國各級公路管理部門對表面破損一向都比較重視,但該項指標的數據采集工作是一個令人頭疼的問題,目前還主要依靠人工采集,除了主觀性大、效率低外,也存在很大的安全隱患,尤其在高速公路上。國內少數單位在20世紀90年代中后期以來陸續引進了路表破損數字圖像采集系統,它的基本原理是采用車載式數字攝像系統連續高速采集路表的圖像,然后在室內通過后處理軟件自動處理與人工判讀相結合,識別、分類與統計路表破損。 路表破損攝像系統極大地提高了工作效率,避免了高速公路人工破損調查的危險性,隨著我國高速公路建設的快速發展,必將成為廣泛應用的設備。由于市場需求的大量存在和進口設備的價格居高不下,國內有幾家研究單位開始國產化的探索,并已有原型機問世。

根據對該設備用戶的調查了解,路表破損攝像系統在使用中的不便之處主要是室內后處理的工作量較大。由于現階段廠家提供的后處理軟件在圖像的自動識別方面存在誤判、漏判及難以判定等現象,必須由人工來輔助處理,這種情況下工作人員所面臨的圖像數量是龐大的。針對這一問題,該設備制造商和國內的研制單位目前的工作重點是表面破損的自動識別、歸類,并自動輸出路面破損率(dr)、路面狀況指數(pci)等指標,生成路面破損表格。 路表三維激光可視化系統是一種新型的路表破損數據采集系統,該系統采用激光傳感器(橫向4個,縱向兩個)隨著車輛的高速行駛,連續掃描一個車道,得到路表的三維可視圖,并實時處理,通過對該圖的分析,可得到裂縫、變形、松散及泛油等各種病害;同時,還可以測試平整度和車轍。與數字圖像系統相比,激光三維可視化系統的優勢是可以較好地反映變形類破損,分析不受陰影的影響,采集數據度較高;缺點是數據量大,硬件要求高,價格較高,約100萬美元。目前該類型的設備在上的用戶非常少,在國內還沒有用戶。

2.5 路面雷達測試路面雷達是利用電磁波在路面結構層和路基中的傳播和反射,根據回波的傳播時間、波幅與波形,確定目標體的空間位置或結構。用于路面測試早出現于20世紀70年代,80年代后期在設備技術上和應用水平上有很大的進步。路面雷達的測試速度與采樣頻率直接相關,通常約60km/h左右。目前國內約有20臺路面雷達,并且每年都在增加,這些設備的品牌不同,主要產于美國和歐洲,但測試原理基本相同。可以說,路面雷達為路面厚度測試、相對高含水區域檢測、結構層完整性判定等提供了難以替代的手段。 目前的路面雷達在瀝青砼面層厚度檢測上的精度約為3%,在水泥砼面層厚度檢測上的精度約為5%;在結構層完整性,如水泥砼板的脫空判定、橋面鋪裝的剝離等方面的研究仍有待于進一步深化,由于實際情況往往難以客觀判定,往往采用不同的檢測方法來相互印證,例如用落錘式彎沉儀與路面雷達同時作脫空判定,用紅外熱成像儀和路面雷達同時作橋面鋪裝剝離判定,但這方面的國內外研究成果較少,僅有的少數成果也多沒有得出相關性良好的結論。 路面雷達的應用,除了雷達天線本身的精度外,后處理軟件也非常關鍵,可以說,設備提供了檢測的手段,而軟件決定了應用的廣度和深度,應當引起國內用戶足夠的重視。各雷達廠家都有配套的后處理軟件,另外也有一些專業性研究所開發的更為專業的后處理軟件,尤其以美國和芬蘭的研究較深入。另外,根據雷達測試數據分析路面結構的壓實度和含水量也是一個研究方向,目前國內尚沒有見到公開發表的實際應用情況的論文或報告。

3 數據分析與評價目前我國的公路科研和管理部門在綜合各項檢測指標,分析路面病害原因,評價其使用性能,并提出相應的養護措施方面已經建立了自己的體系。但近年來早期建設的道路開始進入了大中修或改建的高峰期,新建高速公路的一些路段也出現了早期損壞;與此同時,新型檢測設備不斷涌現,提供了更豐富、更的信息。因此,如何更好地利用自動化的無損檢測技術和分析方法,評價路面使用性能,深入分析病害產生的原因,以提出經濟上優化、技術上合理可行的維修方案,對于創造更好的社會效益和經濟效益是至關重要的。美國、加拿大、芬蘭、荷蘭等國在這方面的研究較為成熟,已開發了一批專家系統軟件,并結合路面使用性能退化機理、力學分析、壽命周期費用分析等理論,建立了集病害原因分析的力學~經驗方法、基于經濟分析的路面養護及補強設計優化方法為一體的系統化的分析理論。而在我國,目前大多數自動化檢測設備的用戶尚停留在簡單使用的層次上,僅有個別單位在進行相互獨立的研究。產生這種現象的主要原因是:

1 大部分用戶單位科研力量較弱;

2 自動化檢測設備價格昂貴,很多科研單位限于資金問題尚沒有購買,或僅有一、兩種;

3 科研單位的研究成果在系統化、集成化和市場化上不夠,因此難以推廣。隨著我國高等級公路建設的日新月異,以及公路管理機制、科研單位體制的改革,對公路養護管理水平,科研單位的科技、市場競爭力的要求越來越高,相信這種情況將很快出現變化。

4 小結道路檢測技術的總體趨勢是:由人工檢測向自動化檢測技術發展,由破損類檢測向無損檢測技術發展,由低速度、低精度向高速度、高精度發展。近幾年,自動化路面無損檢測設備在中國越來越多,這與我們的公路建設事業的發展是相對應的。與此對應的,圍繞自動化檢測設備所開展的研究也將在深度和綜合性上得到加強。可以認為,道路無損檢測技術及路面使用性能評價在中國的發展方向為:

1)測試設備的需求量越來越大,用戶越來越多,并逐步實現國內組裝及國產化;

2)圍繞測試技術所展開的研究逐步深化,并通過相關軟件的市場化來推廣;

3)集成多種設備檢測結果的路面使用性能評價與病害原因分析、養護與改建措施的專家系統的應用,或直接集成到路面管理系統中。


參考文獻

1. 梁新政. 柔性路面結構層應力非線性反演研究. 大連理工大學博士論文.2000年7月

2. 王鐵兵,王成竹. rspii路面檢測車系統在路面平整度檢測中的應用. 東北公路. 2001年第三期

3. dar-hao chen. study of rut-depth measurements. transportation research board 80th annual meeting. january 7-11,2001. washington, d.c

4. 劉清泉. 路面抗滑能力測量. 公路交通科技,1993年。

 
  

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言